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REGULATING AI: LESSONS FROM SCIENTIFIC COMPUTING  

ABSTRACT 

The integration of artificial intelligence (AI) into various sectors raises critical discussions 

regarding the regulation of inscrutable AI systems. Drawing parallels from the realm of 

scientific computing, this essay examines the multifaceted interaction between computation and 

theory to elucidate lessons for AI regulation and information systems research. Scientific 

computation has grappled with theory-agnostic approaches that, while inscrutable, have spurred 

profound advancements and insights. Reflecting on historical and contemporary examples of 

scientific computing, we propose that the regulatory approach to AI should not be overly fixated 

on pre-emptive scrutability, but instead must balance ex-ante and ex-post regulatory 

mechanisms. We argue that strict adherence to explainable AI's idealistic goals may indeed 

hinder the emergent capabilities of AI applications. We conclude that nuanced regulation 

informed by the scientific community’s uneasy journey with computation can foster 

responsible, yet innovative, AI deployment. 

INTRODUCTION 

 As artificial intelligence (AI) continues to permeate and impact diverse fields, public 

apprehension is emerging about a lack of any clear causal logic and transparency in many of its 

algorithms (Bauer et al., 2023; Lebovitz et al., 2021; Mikalef et al., 2022; Nishant et al., 2023; 

Ransbotham et al., 2016; Van Den Broek et al., 2021; Zhang et al., 2021). For example, in 

medicine, computational techniques with no theoretical grounding can outperform extant 

practices (Kawamleh, 2022; London, 2019; Matulionyte et al., 2022). Likewise, in businesses, 

if AI can streamline operations or enhance customer service, questions of how it actually works 

may be considered immaterial. On the other hand, regulatory bodies and civic groups are 

increasingly posing the question: should scrutability be a prerequisite to the deployment of AI 

models (Graziani et al., 2023)? Without full transparency into its mechanisms, users and 



organizations may not be able to fully control AI, leading to unforeseen consequences, 

detrimental bias, and outcomes misaligned with public policy and welfare objectives (Bauer et 

al., 2023; Dwivedi et al., 2023; Meske et al., 2020; Rai et al., 2019).  

This paper aims to explore the challenges of AI inscrutability, focusing on an important 

vanguard of new computational technologies: the scientific community. Scientific research has 

been a source of many of the world´s most impactful technologies, such as World Wide Web, 

grid computing, medical imaging, and critical components of most electronic devices (Pujol 

Priego et al., 2021; Wareham et al., 2022). From its genesis, science has been fixated on 

theoretical explanations of cause and effect across its various disciplines. However, a closer 

examination of scientific computation reveals a more intricate relationship between science and 

explicable, codified theory than commonly assumed. While at its core, scientific computation 

involves the development of models and simulations to understand natural and social systems; 

contrary to expectations, the relationship between the scientific enterprise and computing has 

not always been comfortable or uncontentious. In the early days of computation, the more 

theory-minded members of some scientific communities viewed computers as glorified slide 

rules—a rudimentary numerical hack that had no place alongside the aesthetic refinement of 

formal mathematics (Hammersley & Morton, 1954). It may well be surprising that this 

equivocal relationship between theory and computation is one that continues today (Mitchell, 

2023). And while it is less polemic as it once was, it remains just as nuanced and complex, if 

not even more so due to recent developments in AI (Benbya et al., 2021; Berente et al., 2021; 

Mitchell & Krakauer, 2023).  

Recent literature has expressed concerns regarding the inscrutability of AI (Berente et 

al., 2021; Lebovitz et al., 2021; Zhang et al., 2021), the emergence of unexpected properties in 

deep learning models (Bubeck et al., 2023; Wei et al., 2022), and even the geopolitical and 

existential threats posed by closed, black-box models (Bostrom, 2017; Bostrom et al., 2020) 



‘Explainable AI’ is now the North Star of AI policy debates (European Commission, 2021; 

National Institute of Standards and Technology, 2023; Phillips et al., 2021; Vilone & Longo, 

2021). And while this observation may be unwarranted, one tendency we see in AI policy 

discussions is a bias toward portraying explainable AI as a dichotomous property: AI logic is 

either showcased in a well-lit display cabinet, concrete and scrutable, or ensconced in a black 

box, vaporized into a deep neural net.   

Our intention in this essay is not to discount any concerns about AI inscrutability. On 

the contrary, we consider them serious and, as a response, suggest that AI regulatory debates 

can learn a great deal from science’s own struggles with computation, theory, and scrutability. 

In science, the relationship between computational techniques and the scientific theories used 

(or not) for explanation and prediction is far beyond anything dichotomous—it assumes many 

forms, degrees, objectives, and directions. It is precisely this diversity and nuance that we aim 

to explore in this essay: how science has employed computers to model, explain, and predict 

the behaviors of the systems they study, spanning from the 1940s to the present day.  

We begin this exploration by describing the assorted history of scientific computation 

within the post-WWII physics landscape, focusing on the emergence of Monte Carlo simulation 

(Galison, 2011, 2017). Theoretically, we situate our discussion in the tradition of 

instrumentation, which views computation as a critical instrument that not only detects, 

measures, or quantifies concepts, but also embodies or defines them (Rheinberger, 2010; van 

Helden & Hankins, 1994). To substantiate our argument, we examine three examples of 

scientific computing in high-energy physics, computational chemistry, and structural biology. 

These examples illustrate three subtly distinct modalities of how computation and theory liaise 

to increase scientific understanding.  

We argue that inscrutability in AI is not just a threat to understanding: it can enable new 

forms of insight – both directly and indirectly. In doing so, our perspective enriches the broader 



discourse in the Information Systems literature which has emphasized the interplay between 

AI’s theoretical grounding (or lack of) and the challenges inherent in the realities of its use 

(Berente et al., 2021; Lebovitz et al., 2021; Zhang et al., 2021). Recognizing the concerns raised 

about biases in AI systems (Nishant et al., 2023; Rai et al., 2019), we follow by extracting 

general insights and normative recommendations for policy debates related to AI development, 

use, regulation, and ontology. Particularly, we advocate for a responsible, holistic regulatory 

approach: AI regulatory policy should seek appropriate balance and coordination between ex-

ante and ex-post mechanisms (OECD, 2021). Through balanced and pragmatic regulatory 

policy, the potential pitfalls of AI systems can be mitigated without unduly hampering their 

transformative potential. 

COMPUTATION IN SCIENCE: THE EARLY DEBATES 

In the vast annals of the history of computing, most early developments in scientific 

computation were driven by the immediate military needs in cryptography, ballistics, and 

logistics. The most famous examples being the work of Alan Turing and colleagues at Bletchley 

Park for cryptography (Cameron 2008), and the Electronic Numerical Integrator and Computer 

(ENIAC) at the University of Pennsylvania (Smithsonian 2007), designed to perform complex 

calculations for artillery trajectory tables.  

A landmark example was the development of Monte Carlo techniques at the ENIAC 

computer at the University of Pennsylvania and Los Alamos National Laboratory by John von 

Neumann, Stanislaw Ulam, Nicholas Metropolis, and others. During post-WWII research on 

the hydrogen bomb, scientists needed a method to model the diffusion of neutrons through 

plutonium to calculate the probability of a nuclear fusion reaction (Galison 2011). Such insight 

was inaccessible experimentally and too complex to be solved with the analytical techniques of 

the time. The term ‘Monte Carlo’ is a reference to roulette wheels with random outcomes. These 

random outcomes can be generated repeatedly, and the resultant distributions can be analyzed 



to gain insight into the behaviors of the systems being simulated.  

For fusion research, Monte Carlo simulation was developed for pseudo-random number 

generation to simulate the inherent processes in the hydrodynamical shocks of energy through 

gas and matter. Neutrons could scatter from a nucleus, be absorbed by a nucleus, or cause a 

nucleus to undergo fission, emitting an unknown quantity of neutrons. None of these 

probabilities were calculable via traditional techniques, thus motivating von Neumann and 

colleagues to refine the Monte Carlo methods for machine computation. The first classified 

simulations of nuclear fusion were produced using over a million IBM punch cards with the 

ENIAC computer: The term ‘Monte Carlo simulation’ was first shared publicly in the American 

Statistical Association Journal in 1949 (Metropolis & Ulam, 1949). 

With the growth of computer simulations in science in the 1950s, a new category of 

research emerged that defied the traditional dichotomy of theorist and experimentalist, with 

monikers such as ´experimental mathematics’ or ‘theoretical experiments’ (Galison, 2011). It 

referred to a mode of mechanized analysis for physical systems beyond the reach of both 

empiricists and theoreticians. Unsurprisingly, this new approach was met with great skepticism 

and condescension, considered vastly subordinate to the refined world of equations that 

dominated the Einstein-Dirac apparatus of theoretical physicists (Hammersley & Morton, 

1954). It threatened to replace real, theoretical science with low-brow, daily work of 

computation and numerical approximations (Kowarski, 1972a). Furthermore, legitimate 

concerns arose regarding replicability and inscrutability, qualities that were otherwise clearly 

accessible in disciplined mathematical deduction. The computer programs were often too large 

to be publishable, and the peculiarities of local computing environments limited the portability 

and replicability of simulations (Galison, 2011). Thus, foreshadowing the concerns of today’s 

AI by some 70 years, these simulations were suspiciously viewed as largely inscrutable, 

inexplicable, highly sensitive to their deployed architectures, and hence, difficult to repurpose 



or redeploy.   

However, a deeper metaphysical debate emerged about how they functioned; that is, 

what was the most appropriate language to describe “scientific truth”. The dominant view was 

that partial differential equations were the most accurate reflection of the Platonic metaphysics 

governing natural systems. Nevertheless, this view was increasingly challenged by scientists 

employing new computerized techniques in fields such as chemistry or engineering. These 

scientists embraced computation as an approach that was equal—and not subordinate to—

purely mathematical theorizing (Galison 2017). With the growing adoption and success of 

Monte Carlo techniques, many scientists began to assert that “stochasticism” (Galison 2011 

p.146) was the optimal language to describe the numerous random processes that occur in 

nature (Kowarski, 1972b). This perspective considers elaborate mathematics as ornamental 

formalisms that obfuscate a more direct epistemic engagement with the stochastic nature of 

many natural phenomena (Galison 2011).  

So why is this important? As we mentioned, we believe that this brief glimpse into the 

early debates in scientific computing is useful for framing current deliberations on inscrutable 

AI. The history of Monte Carlo simulations shows us how many individuals were 

uncomfortable with the pseudorandom nature of the these back-box simulations. Similar to 

today’s AI, skeptics derided Monte Carlo simulation’s lack of any clear causal logic or ‘world 

models’ (Mitchell, 2023). Scientists doubted their fidelity to nature and mistrusted their lack of 

transparency, portability, and replicability. Theorists regarded computers as pedestrian tools—

a crude stochastic slide rule—and even discouraged their use whenever possible (Hammersley 

& Morton, 1954). Yet beyond these more operational polemics surrounding early scientific 

computation, deeper philosophical deliberations also surfaced.  

Even some of Monte Carlo´s staunchest critics eventually recognized that despite (and 

because of) its atheoretical approach, its simulations could become a new source of insight into 



natural problems and systems (Tukey, 1972). In some instances, the deeper value of this 

unorthodox method was not its conjured predictions, but the subtle hints it could offer for 

looking at a problem in fundamentally new ways—perspectives that later fed into formal theory. 

Shockingly, liberation from extant theory became an asset: Not only did Monte Carlo enable 

more useful representations and predictions of stochastic processes, but eventually nourished 

novel theory development.  

As a consequence, computational science slowly rebuilt its status as a crude tool for 

numerical approximations, gently nourishing it to become a rival, truer language of the world’s 

randomness. With new methods of approximation, representation, and examination, Monte 

Carlo’s atheoretical inscrutability morphed from a threat into a novel embodiment of 

understanding, an alternative and legitimate language of science with its own ontological value 

(Galison 2017). These concerns, reverberating from a historical context some 70 years ago, 

offer an imperfect yet useful analogue that can contextualize and contribute to current AI 

debates (Birhane et al., 2023).    

REGULATION AND INSCRUTABILITY 

The current public discourse is ripe with calls for regulation focused on transparency 

and addressing inscrutability in AI systems (Graziani et al., 2023). The White House just 

released the Executive Order on the Safe, Secure, and Trustworthy Development and Use of 

Artificial Intelligence (Executive Order 14110, 2023). In Europe, while a new AI Act is still 

under negotiation, its content has been drawn up as early as 2021 (European Commission, 

2021). Although both frameworks aim to regulate AI, the EU AI Act places greater emphasis 

on preventing AI's potential surveillance capabilities and safeguarding privacy. For instance, 

the EU AI Act forbids usage such as social scoring and real-time facial recognition, and it 

defines strong guardrails for “high-risk” systems, those linked to heavily regulated products 

and those to be used in critical areas such as biometrics, critical infrastructure, employment, 



law enforcement, and migration. The U.S. Executive Order, by contrast, has also a stronger 

innovation focus, with considerations related to legal liability, intellectual property, and 

commercializing AI applications (Engler, 2023).  

At their core, however, both initiatives seek to place guardrails on the known and 

unknown risks of AI. Both jurisdictions are concerned that the lack of transparency could lead 

to a loss of human control: “human oversight and transparency are an essential element in 

ensuring that AI systems are in conformity with the relevant legislation”  (Council of the 

European Union, 2020).  

Inscrutability as referred to in the AI literature refers to the challenges of these models 

being unintelligible to certain audiences (Berente et al., 2021). It is often specified as (1) 

transparency – whether the code was disclosed by the developers; (2) opacity – whether the 

algorithm’s logic can be accessed; (3) explainability – whether the algorithm’s design can 

enable a description – sometimes causal – of how model predictions are generated.; and (4) 

interpretability – whether humans can actually make sense of the algorithm and its output in the 

context of its designed functional purpose (Asatiani et al., 2020, 2021; Berente et al., 2021; 

Lebovitz et al., 2021; National Institute of Standards and Technology, 2023; Vimalkumar et al., 

2021). 

However, for many AI applications, these recommendations for scrutability might be 

aspirational – at best. For example, NIST (2023) highlights a possible lack of fidelity or 

consistency in explanation methodologies, that humans can incorrectly infer a model’s 

operation, or that the model does not operate as expected. Moreover, transparency does not 

guarantee explainability, particularly if the user lacks sufficient technical skills (NIST, 2023). 

Hence, to mitigate the potential risks of AI, The EU AI Act envisages a long set of 

measures, including: adequate risk assessment and mitigation systems, high quality of the 

datasets, logging to ensure traceability, detailed documentation, clear and adequate information 



to the user, appropriate human oversight, high level of robustness, security and accuracy. These 

activities are designed to be implemented before the AI solution is publicly deployed as ex-ante 

measures, aligned with the regulatory culture of product safety. Although the act includes (61) 

“post-market monitoring” and (62) “reporting of serious incidents and of malfunctioning,” 

only 2 of the 85 articles are ex-post, that is, after the deployment of the AI application (European 

Commission, 2021).  The US Executive Order proposes a somewhat more balanced approach 

between ex ante and ex post measures, although the proposed measures a quite broad, with the 

intention to define sector specific measures as critical issues emerge (Engler, 2023).  

While a proactive, ex-ante emphasis is desirable for policy, many forms of deep neural 

networks are often excessively complex, making ex-ante, explainable-by-design governance 

infeasible (Hiriart et al., 2004). As a result, research into explainable AI (XAI) has grown 

substantially, presenting a variety of methods to understand the behaviors of AI deployments in 

either testing or operational phases (Fernández-Loría et al., 2022; Kim et al., 2022; Martens & 

Provost, 2014). Common methods are normally focused on auditing the model’s outputs, for 

example, extracting importance-weights that explain a model’s predictions in terms of the 

influence of specific features as evidence of how the prediction is derived (e.g. LIME (Ribeiro 

et al., 2016), SHAP (Lundberg & Lee, 2017)). Other methods include the use of counterfactuals 

to infer explanations for individual model predictions (Fernández-Loría et al., 2022; Wachter et 

al., 2017), integrated gradients (Sundararajan et al., 2017), decision trees (Arenas et al., 2022), 

as well as the development of graphic interfaces to improve human interpretability (Kim et al., 

2022). Finally, Mitchell (2023) describes “probes” where a simpler neural network is trained 

to decode the original network’s internal activations in response to an input. While all of these 

methods are valuable, like all diagnostic techniques, they have strengths, weaknesses and 

sensitivities that render them more-or-less useful depending on the context, and by-and-large, 



are just exogenous proxies of a model’s internal logic1. This is not to suggest that explainable-

by-design AI is not a desirable research and policy objective. Rather, simply to acknowledge 

that the architectures of many AI models make monitoring and compliance of such objectives 

prohibitively difficult, necessitating balance and coordination between ex-ante and ex-post 

regulatory mechanisms (OECD, 2021). 

THREE TALES OF SCIENTIFIC COMPUTATION 

Scientific computation offers a unique perspective on scrutability, explainable AI, and 

understanding. The larger scientific program for understanding a phenomenon is built on the 

foundations of instrumentation and theory. Instruments in scientific computation can include 

hardware (e.g., sensors, detectors), software (e.g., algorithms) and various means of data 

transmission, storage, analysis, simulation, visualization, and argumentation (Galison, 2008). 

Scientific instruments are often assumed to agnostically detect, measure, or quantify concepts, 

but do not in any way embody or define them (van Helden & Hankins, 1994). However, many 

historians of science consider this perspective naïve (Daston & Galison, 2021; Galison, 2008; 

García-Sancho et al., 2014). In many forms of scientific research, granular data generated from 

instruments may lack evidential value until it is integrated and ascribed to some larger 

theoretical explanation of the natural phenomenon being examined. Hence, theory and 

instrumentation can become tightly coupled in the machinery of scientific knowledge 

production2. We emphasize this perspective to highlight the potential protagonism that a 

computational approach can have in embodying scientific meaning in data; that is, the genesis 

of algorithms that filter, analyze and ascribe evidential value to data are highly interdependent 

(Pujol Priego & Wareham, forthcoming). 

 
1 It is worth noting that, in some instances, disclosure of the internal logic of a system could infringe on the rights 
of others by revealing protected trade secrets or violation data privacy data rules (Wachter et al. 2018). 
2 As (Hacking, 1992)) notes, "Phenomena are not described directly by Newtonian concepts. It is rather certain 
measurements of the phenomena – generated by a certain class of what might be called ‘Newtonian instruments’ 
– that mesh with Newtonian concepts”. 



When referring to theory, we consider it broadly as the applied conceptual apparatus 

that explains the functioning of certain aspects of the natural world, describing the regularities 

inherent in objects and events. Theoretical explanations are a product of many things, including 

human imagination and mathematical deduction, observation, and experiment. A 

comprehensive definition of theory is well beyond the scope of this essay. However, for our 

examples, we focus on cases centered around the prevalent theoretical domains of physics, 

chemistry, and biology, as the theories are most commonly used in each discipline. What is 

important for us is that science uses theory as a language of understanding and predicting the 

behavior of the systems it studies – sometimes referred to as ‘world models’ in the AI literature 

(Mitchell, 2023). In pedestrian terms, it is about explaining things with transparent, explanatory 

or causal logic, that is codifiable, communicable, scrutable, refutable, and useful for others.  

In the following, we present three examples of scientific computing that allow us to 

examine diverse configurations where theory can contribute distinctly to computation (and vice 

versa). Theory can be foregrounded and significantly define what and how data are generated 

and interpreted. Conversely, theory can be backgrounded, absent in the algorithmic logic, only 

called upon to interpret the findings. Finally, the relationship between theory and computation 

can also be more intertwined, multidirectional, and ambiguous (Karniadakis et al., 2021; Lavin 

et al., 2021).  

Theory in the foreground: CERN 

CERN is widely recognized as the world’s most powerful infrastructure for high-energy 

physics research. CERN’s application of scientific computing has been driven by an attempt to 

refute and validate the dominant physics theory known as the Standard Model. To test the 

predictions, physicists developed ATLAS3, the largest detector ever constructed for a particle 

collider, measuring 46 meters in length and 25 meters in diameter. The ATLAS and CMS 

 
3 About ATLAS: https://atlas.cern/about  

https://atlas.cern/about


detectors4 were designed to record the high-energy particle collisions of the LHC, which occur 

at a rate of over a billion interactions per second. On 4 July 2012, ATLAS and CMS announced 

that they had independently detected a new particle consistent with the predicted attributes of 

the Higgs boson (Brumfiel, 2012). The Higgs boson is an elementary particle that gives mass 

to everything in the natural world (Azhari et al., 2020). Discovering the Higgs boson posed a 

major challenge for particle physics since it cannot be observed directly: it is highly unstable 

and decays into other particles almost immediately after being produced in high-energy particle 

collisions5 (Brumfiel, 2012) rendering it impossible to detect by any straightforward method. 

First, theoretical physicists predicted the possible decay modes and the probability of each mode 

occurring. Then, to confirm the existence of Higgs boson, physicists empirically identified these 

decay products and match their occurrence rates with the theoretical predictions.  

Computation plays a crucial role in this process: Complex algorithms were developed 

to simulate millions of particle collisions and their possible decay pathways. These simulations 

offered physicists a benchmark to compare data from the LHC's detectors with the theoretical 

predictions: Computation was critical to transverse the gap between theory and empirical 

observation. Theory-forward computation tells science what to look for, where and how to look 

for it, and how to interpret it. Without theory, the massive data quantities generated at the LHC 

are void of any ontological meaning. 

Theory in the Background: Power Storage 

 Our second illustration comes from the application of generative computational 

methods in materials synthesis, which have resulted in the discovery of new battery materials 

 
4 The CMS detector is slightly smaller than ATLAS, and is used to detect similar physics phenomena with 
different technologies (e.g., magnetic fields) to increase the reliability of the findings. As such, ATLAS and CMS 
very much work in tandem. https://home.cern/science/experiments/cms  
5 The Higgs boson’s exact half-life is unknown, but best estimates place its mean value around 1.56*10-22. As the 
Higgs boson has no mass, it travels at the speed of light, c. Multiplying these two numbers produces a distance 
similar to the diameter of a proton. The diameters of the innermost detectors in the ATLAS and CMS detectors 
on the LHC are about 30 cm. Hence, the Higgs boson decays well before it reaches any direct detection method.  

https://home.cern/science/experiments/cms


with improved energy storage capacity, linearity, and longevity (Dwivedi et al., 2023). 

Traditionally, the discovery of new materials involved trial-and-error approaches requiring 

time-consuming and resource-intensive efforts. Recent computational applications allow 

scientists to explore a vast number of potential materials with computational training of existing 

databases describing known materials and their attributes (Carrete et al., 2014). Computational 

training unveils patterns in the composition, structure, and attributes of known materials, and 

based on that training data, it is possible to generate new hypothetical materials with a set of 

desired properties. The utility of these predictions is the fact that they can be quickly generated 

and subsequently tested and modified to significantly accelerate the discovery process. 

Breaking up the process into several steps, scientists first define the properties of the materials 

that they want (e.g., higher storage capacity, greater stability and linearity, faster charging rates, 

etc.). Second, scientists compile databases from scientific literature, laboratory measurements, 

or others sources on existing materials and their known properties and compositions (Jain et al., 

2013). Once data is curated and ready, scientists develop different computational models, train 

them on the data, and extract relationships between a material’s composition or structure and 

its properties (Schmidt et al., 2019). Third, the computational model generates new hypothetical 

compositions and structures predicted as having the desired properties. In the last step, scientists 

need to verify the feasibility of the materials (i.e., can they be synthesized at all?) and then 

experimentally verify if the materials conform to the predicted properties (Finegan et al., 2021).  

 A landmark example in this area comes from Stanford University, MIT, and Toyota 

Research Institute, employing computational models to predict the attributes of thousands of 

new materials for lithium-ion battery cathodes6. The research collaboration predicted new types 

of solid-state battery electrolytes, which promise to revolutionize electric vehicles by offering 

increased energy storage and safety (Attia et al., 2020). In this example, the role of theory is 

 
6 Additional information: https://news.stanford.edu/press-releases/2019/03/25/ai-accurately-prl-life-batteries/. 
And: https://energy.mit.edu/wp-content/uploads/2022/05/The-Future-of-Energy-Storage.pdf 

https://news.stanford.edu/press-releases/2019/03/25/ai-accurately-prl-life-batteries/
https://energy.mit.edu/wp-content/uploads/2022/05/The-Future-of-Energy-Storage.pdf


rather implicit: computation does not start with a formal theory of how different elements 

combine to form a material with certain attributes, but rather, the model learns patterns from 

data about existing materials, and uses these patterns to predict new materials.7  

Theory on Demand: AlphaFold 

 Our third example is drawn from the life sciences and is provided by DeepMind, a 

subsidiary of Alphabet. In 2018, AlphaFold was introduced to the protein science field as a tool 

to predict protein structures with an unprecedented degree of accuracy (Jumper et al., 2021). 

AlphaFold is considered by some to be the most important contribution of AI to date (Toews 

2021).  

 Elucidating the structures of proteins is significant because proteins are the building 

blocks of life. Proteins fulfill various functions, including nutrient uptake, killing foreign 

particles, and transporting necessary molecules throughout the body. Fundamentally, proteins 

are made of a sequence of hundreds to thousands of amino acids, of which there are 22 main 

types. These component amino acids can then be seen as its alphabet, where different 

arrangements can produce different structures in 3D space. Such structures are important 

because they ultimately dictate how the protein functions: The shape enables a protein to 

interact with high specificity with other biomolecules. With the tight connection between 

structure and function, scientists have been aiming to map the structure of proteins to deepen 

the understanding of universal biological systems, especially of human physiology. 

 The process of empirically determining the protein structure, however, is challenging, 

typically taking years typically to produce just one validated structure. Experimental techniques 

such as x-ray crystallography, nuclear magnetic resonance, and cryogenic electron microscopy 

can only work for some proteins under certain conditions. While computational methods offered 

 
7 It is important to highlight that, while to a lesser degree, theory still plays an implicit role. For example, the 
model is trained on a dataset of known materials that have been studied through a long-lasting research tradition 
rooted in the fundamental theories of physics and chemistry. Hence, one could argue that the model is biased 
towards such theoretical priors when it learns from the data. 



an alternative, it was thought that it was not possible to employ such techniques due to the 

extremely large number of potential conformations they can take in 3D space. It was thus a 

huge breakthrough when AlphaFold demonstrated its ability to predict structures with high 

levels of accuracy; currently with more than 200 million proteins.8 

When theory is inserted punctually 
 
 As a predictor of final protein structures, AlphaFold is successful in predicting proteins 

that are similar to some 200,000 empirically verified proteins on which it was trained. However, 

while it succeeds in the metrics of final prediction, AlphaFold offers no insight into how 

proteins fold in nature. This is largely since the deep learning model’s mechanism is theory-

free until the absolute final phase, where the predicted structure is checked for violations against 

known laws of chemistry and physics. Researchers in computational science refer to this as 

physics-informed AI (Karniadakis et al., 2021), where the term ‘physics-informed’ broadly 

references any theoretical framework to constrain the model without defining the algorithmic 

mechanism (Lavin et al., 2021). In fact, a team of researchers attempted to modify AlphaFold 

by introducing theoretical constraints earlier in the model. They found that including these 

physical priors (e.g., legitimate chemical bonds) early into AlphaFold’s training led to worse 

performance in the final predictions (Ahdritz et al., 2022).  

When computation informs theory 

 In the same manner that theory can be unidirectionally ‘informed’ into scientific 

computing at specific points, AI can reciprocate, where the intermediate and final outcomes of 

atheoretical computation can enrich theory. This bidirectional transaction between theory and 

computation is referred to as physics-infused AI (Karniadakis et al., 2021; Lavin et al., 2021); 

once again, where the term ‘physics’ broadly refers to any relevant theory.     

 For example, researchers created ExplainableFold, a modification of AlphaFold towards 

 
8 https://alphafold.ebi.ac.uk/about 



counterfactual explanations in protein folding (Tan & Zhang, 2023). Previously, biochemists 

would attempt to understand the folding mechanism by deleting or substituting small sections 

in a protein sequence and exploring how these changes affect the protein's overall structure. 

However, these approaches are slow and difficult to carry out in the lab. Alternatively, 

ExplainableFold simulates these biochemical experiments virtually, aiding in comprehending 

the role of different sequences in the overall structure (Romasanta et al., 2023). Similar 

techniques have also been used to understand protein dynamics; that is, a protein´s movements 

in 3D space that also determine its function. As seen, AI applied to biology has facilitated 

theoretical insights that were, to a large degree, unexpected by-products of its main purpose of 

global structure prediction.  

When computation informs empiricism 

Mapping the 3-D structure of a protein through experimental methods is a notoriously 

difficult task. As an example, x-ray crystallography is the most widely used method to 

empirically determine the structure of many atomic structures, including proteins. A cell 

biologist attempting to identify the structure and function of a key protein (e.g. a coronavirus) 

would generate many samples of the proteins and suspend them in a crystal. In the lucky chance 

that they are successful, this crystal can then be sent to a large synchrotron radiation facility 

where a powerful x-ray beam is allowed to pass through it. The photons from the x-rays weakly 

diffract off the electrons in the atoms that form the amino acids chains of the proteins, and the 

resulting output, if successful, is a 2D scattered pattern of dots called a diffraction pattern. By 

combining thousands of diffraction patterns captured from various angles, analysts can utilize 

the dots’ locations and intensities to infer the protein’s structure. However, this is not 

straightforward: the diffraction patterns experience notable phase interference (constructive, 

destructive). Solving this ‘phase problem’ demands the application of theoretical physics and 

optics, a traditionally challenging and time-consuming process.  



With AlphaFold, this process has been accelerated. Instead of starting from zero, 

AlphaFold can assist the process by generating basic models of the protein, and, by using this 

homologue as a model of phase interference, saves researchers substantial time. A back-and-

forth workflow that cycles between AlphaFold predictions and empirical validation ensures that 

the structure is both faster and of higher quality (Read et al., 2023). In this regard, AlphaFold 

has demonstrated unexpected value by expediting crystallographers’ workflows (Romasanta et 

al., 2023). The value of AlphaFold in this instance is neither final structure predictions nor the 

replacement of empirical validation; rather, the application of one of its intermediate processes 

to mitigate a substantial problem that plagued empirical science. 

Summary 

 We have explored three important examples of scientific computation where theory 

plays a variety of roles. At the LHC, we claim that theory is foregrounded and permeates 

everything: the experimental design, instrumentation, data, and computation are all fully 

defined by theoretical concepts. Independent of theory, the computational predictions and data 

have no semantic value. In the Power Storage example, theory is far more discrete and 

backgrounded. Generative AI is trained on known molecular compounds to propose novel 

molecular structures. Here, theory is absent from the algorithm, backgrounded, and only 

considered in the subsequent interpretation and validation of the results.  

 AlphaFold, uses theory more discriminately. Theory is only summoned at the final stage 

to ensure the predictions are compliant with known chemical laws. Adapting extant concepts in 

the literature (Karniadakis et al., 2021; Lavin et al., 2021), we call this unidirectional insertion 

of theory theory-informed. Adapting AlphaFold into researchers’ workflows through 

reengineering and adaptations led to several unexpected outcomes. AlphaFold predictions, 

whether more-or-less accurate, have led to theoretical enrichment beyond the initial purview of 

single protein structures prediction. Extending the literature (Karniadakis et al., 2021; Lavin et 



al., 2021), we call this bi-directional relationship theory-infused. Additionally, the intermediate 

outcomes of the AlphaFold algorithm have accelerated traditional empirical research in 

methods in X-ray crystallography. Extending the previous concepts, we call this empirics-

infused. Table 1 summarizes these conclusions. 

DISCUSSION 

Inscrutability and Theory: A More Complex Picture 

The main thesis of this essay is that scientific computing’s multifaceted, ambiguous, and subtle 

relationship with theory, while fascinating in its own right, also offers valuable insights for 

current debates in policy concerning (in)scrutable AI. Undoubtedly, inscrutable AI has 

undesirable consequences including implicit algorithmic or training data bias (Nishant et al., 

2023; Rai et al., 2019), the inability to mitigate outcomes misaligned with public welfare or 

safety (Mikalef et al., 2022), and increased concerns that relegating human knowledge to AI 

can cause it to atrophy over time (Bauer et al., 2023; Fügener et al., 2022), further underpinning 

the existential fears of strong artificial general intelligence (Bostrom, 2017; Bostrom et al., 

Table 1. The role of theory in scientific computing 
   Theory 

Foregrounded 
Theory 

Backgrounded 
Theory 

Informed 
Theory  
Infused 

Empirics Infused 

Example Large Hadron 
Collider 

Power Storage AlphaFold:  
Structure 
prediction 

AlphaFold: 
Region 
specification  

AlphaFold: 
Phasing and 
crystalizing 

Theoretical 
locus  

Fully based on 
theory 

No theory – 
generative AI 

No theory until 
final phase 

No theory until 
final phase 

No theory until final 
phase 

Locus and 
role of 
theory in 
workflow 

Theory predicts 
type, placement, 
and frequency of 
Higgs boson 
derivatives: 
what/where/when 
to look for. How 
to interpret it. 

Interpretation 
and validation 
of final results 

Imposed in final 
phase of 
prediction to 
ensure validity 
of the predicted 
chemical bonds 
in predicted 
structures  

Theoretical 
insights into 
mechanisms 
of protein 
folding 
 

Intermediate and 
final predictions 
used to refine Xray 
crystallography 
phase interactions, 
identifying 
homologues, etc. 

Directionality 
& relative 
position of 
theory 

Omnipresent 
 
Theory defines 
data generation, 
detection, 
imaging and 
computational 
technologies 

Underlying 
 
Foundational 
for 
interpretation 

Unidirectional: 
Theory --> AI 
 
Theory injected 
into algorithm 
at specific point 

Bidirectional: 
Theory --> AI  
AI -->Theory 
 
Intermediate 
insights from 
predicted 
structure 
enrich theories 

Unidirectional:  
AI --> Empirics 
 
Intermediate 
insights from 
predicted structure 
combined with 
extant theory to 
improve empirical 
processes  



2020).  However, our brief foray through scientific computing shows that the picture is much 

more complex. 

What we have seen from both the AlphaFold and the Power Storage examples is that a 

great deal of useful scientific computation can be completed with minimal use of theory, and 

hence, offers little that is ‘explainable’. AlphaFold tells us absolutely nothing about how 

proteins actually fold in nature9, yet it has produced a performance unprecedented in structure 

prediction. Given the likelihood that such outcomes will become more common in science, 

observers have questioned: 

“…the implication that a scientific challenge can be considered partially or solved even 

if human scientists are unable to understand or gain any new knowledge from the 

solution, thus leaving open the question of whether the problem has been solved." 

(Lavin et al. 2021, p. 74). 

Hence, our first observation is that atheoretical algorithms are not exclusively a threat 

or liability — liberation from theoretical priors can have value. There is an understandable 

(and perhaps necessary) human tendency to mistrust systems that they intuitively do not 

understand or that diverge from accepted ways of describing phenomena (Lebovitz et al., 2021). 

The history of Monte Carlo simulations evidences this. Once shunned as an atheoretical, acausal 

numerical hack, scientists soon learned to appreciate the new stochastic perspectives that more 

accurately described many natural phenomena as something ontologically valid on its own 

terms. This naturally leads to the question of whether the ‘stochastic slide rule’ of Monte Carlo 

is equivalent to the current ‘stochastic parrots’ of large language models (Bender et al., 2021). 

There most certainly are substantial differences. Yet recent experience with AlphaFold shows 

how its liberation from extant theory not only enables more accurate predictions—but also 

 
9 Knowledge of actual protein folding is important because many of the protein mutations that cause pathologies 
happen in the folding process (opposed to genetic mutations).  



generates intermediate theory-infused and empirics-infused outcomes that—unexpectedly— 

inform both theoretical biology and empirical workflows (Read et al., 2023). In other words, 

theory-free computation can provide new insights on natural systems, enabling innovative 

theorizing (Mainzer, 2007). Equally, theory can indirectly gain from computation. The 

intermediate outputs of computational simulations prove valuable in expediting empirical 

research that subsequently substantiates and enriches theory development. 

The well-known aphorism of (Box, 1976) that ‘all models are wrong, some are useful’ 

bodes the possibility that an overreliance on some theories can have restrictive, if not 

destructive, effects. This has been increasingly acknowledged in medicine: 

“The long medical preference for radical mastectomy over less aggressive alternatives 

was driven by the pathophysiological theory that removing as much tissue from the 

breast as possible would reduce the probability of cancer recurrence… the overreliance 

on plausible theoretical explanations lead to treatment practices that harmed patients 

and consumed scarce resources precisely because key causal claims in those theories 

were false.” (London, 2019). 

Apart from medicine, many useful tools and practices have been widely adopted long 

before there were theories to hypothesize their existence and explain them. Recent examples 

include superconductivity, neutrino oscillations, and the cosmological microwave background 

(Krenn et al., 2022). What this suggests is that concerns of ontologically agnostic algorithms in 

generative AI or LLMs deserve more nuanced consideration beyond skepticism (Galison 2017).  

Yet, we also emphasize that discarding theory altogether is also a mistake due to their 

complementary roles. Hybrid approaches that integrate theory with pattern recognition have 

made significant breakthroughs, such as in weather prediction (Ebert-Uphoff & Hilburn, 2023). 

In medicine, virtual organ models combine numerous differential equations to model billions 

of state variables. With a model of the organ’s biophysical properties, the integration of machine 



learning models with clinical data have enabled personalized heart simulations (Niederer et al., 

2019).  

This complex relationship between inscrutability and theory brings us to our second 

insight: We should equally entertain the possibility that unexpected perspectives, methods, 

and other computational byproducts of atheoretical computing can be both epistemologically 

useful and ontological legitimate. As AI continues to evolve with computational techniques 

beyond the comprehension of human minds, scientists should embrace a renewed idea of 

scientific understanding based on qualitative characteristics of the theory that speak to human 

intuition (De Regt & Dieks, 2005). For example, (Boltzmann, 1964) described gas as a 

collection of freely moving molecules in a container: As heat increases, so does the motion of 

the gas molecules, making the gas exert pressure on the container walls. A qualitative sense of 

temperature and pressure can be gained without any insight into the calculations of statistical 

mechanics. Yet a growing distance between human intuition and computation is described by 

(Wang et al., 2023) in their review of AI in the sciences: 

“The fact that human brains can synthesize high-level explanations, even if imperfect, 

that can convince other humans offers hope that by modelling phenomena at similarly 

high levels of abstraction, future AI models will provide interpretable explanations at 

least as valuable as those offered by human brains.” (Wang et al., 2023 p. 56) 

Like computing, science has had a long and complicated relationship with this concept 

of what ‘understanding’ a phenomenon actually means (Krenn et al., 2022). For example, 

physicists can predict the gravitational effects at mezzo and macro levels (e.g., cannon balls and 

planets) with great accuracy. Nevertheless, they still do not ‘understand’ gravity on many, many 

levels10. Likewise, the predictive accuracy of quantum mechanics is often heralded as the 

 
10 Understanding the nature of gravity is considered one of the great unanswered questions of physics,  e.g., how 
it is communicated, its relative weakness compared with other fundamental forces, etc. 
https://www.livescience.com/34052-unsolved-mysteries-physics.html  

https://www.livescience.com/34052-unsolved-mysteries-physics.html


pinnacle achievement of modern science. While quantum effects empower the transistors and 

integrated circuits that enable our ubiquitous handheld digital existence11, theoretical quantum 

mechanics is very distant from human perception and hence notoriously difficult to grasp on 

any intuitive level (Smolin, 2006). Biophysicists can show you the myriad of differential 

equations that constitute human organ models, but they are likely partial in their scope and 

depth, and well beyond the understanding of non-experts (Coveney & Highfield, 2023). The 

point is that even the most successful scientific theories are incomplete: They may predict 

outcomes with incredible accuracy but have no conceptual notion of process or ontology. 

Theories may excel in explanatory value and intuitive appeal while offering few refutable 

predictions. Mathematical formalisms may be aesthetically brilliant yet have little 

correspondence with terrestrial human perception. All scientific knowledge is provisional, 

partially useful, and unfinished, and scientists are generally comfortable, if not motivated, by 

this (Galison 2017). 

Hence, this leads us to our third conclusion that solving AI inscrutability, while useful, 

is not a panacea for all challenges of AI explicability. It is desirable, in that it facilitates insight 

into how the application functions and derives its outcomes, but it may not directly facilitate an 

increased ‘understanding’ of anything on intuitive or scientific levels. Here, the concept of 

scientific incompleteness can guide the ongoing push from regulators and practitioners for 

"explainable AI" (Bauer et al., 2023; Pumplun et al., 2023; Vilone & Longo, 2021). Policy 

premised on a naïve notion of explicability-equals-understanding should be updated to 

acknowledge that all models have strengths and weaknesses, and a model’s limitations on 

inscrutability is just one component. 

As such, while we do not contest the value of an ambitious explainable AI policy, our 

 
11 Transistors rely on quantum effects to function. The MOSFET is the most common transistor used in 
integrated circuits. It is estimated that 13 sextillion (13*1021) have been produced, the most frequently 
manufactured device in human history (Ledin & Farley, 2022). 



examples indicate how scientific computing violates its rather naïve aspirations—frequently—

with opaque mechanisms, scant insight, or evidence of how outcomes are derived, thus leaving 

them partially unintelligible to both scientists and laymen. Nonetheless, they are often 

successfully reconstructed and repurposed on many levels that prove beneficial for scientific 

progress. As businesses and society venture further into the realm of AI, any quest for a 

comprehensive understanding of AI ex-ante may be a missed opportunity. Just like scientific 

theories, the knowledge we have of AI systems is provisional and constantly evolving. The 

inconclusiveness of our current AI understanding is both a threat and an opportunity. 

INSIGHTS FOR AI REGULATORY POLICY AND IS COMMUNITY 

Our preceding reflection may imply that we appeal for a more liberal policy toward AI 

regulation. This is not the case. What we do argue is that the issue is more subtle than often 

construed. Particularly, we observe that the ex-ante emphasis of current AI policy, while 

ideologically desirable, is more likely aspirational than implementable. As a consequence, we 

argue that ex-ante and ex-post mechanisms need to be balanced and coordinated. The current 

landscape of AI suggests a need for realistic mechanisms for ex-post compliance, such as 

auditing APIs (Wachter et al., 2017) or probes (Mitchell, 2023) that go beyond mere reporting 

and enable richer regulatory access to AI deployments. This is particularly salient for  

computational applications with real-world impacts, such as in climate modeling, medical 

research, and engineering (Heyder et al., 2023). What we want to emphasize is that these 

problems of inscrutability are not new. The historical canvas of scientific computing is strewn 

with ontologically-centric or ontologically-indifferent techniques, generating an assorted, 

imperfect-yet-useful bricolage of evidence around which consensus might eventually form 

(Galison 2017). What recent, consumerized AI advances have done, however, is to bring such 

potholed epistemic pragmatism out of the scientific labs and into the smartphones and living 

rooms of the general public. This obervation suggests that AI policy should be tempered by the 



fact that often the users of AI differ substantially, and this naturally should situate discussions 

on AI policy. Scientific computation is most common in a demographic of users with 

commensurate expertise to probe, stress, dissect, and reengineer AI, and, frequently, the ability 

to self-regulate. For the wider populace, regulatory perspectives have different functions and 

consequences.  

Of course, the main reason that AI is now part of the toolbox and lexicon of the general 

public is the growing investments in AI by large technology corporations such as Alphabet, 

Microsoft, and Meta (Facebook) as central strategic enablers. As big tech assumes more control 

over AI’s most critical inputs (computing power, large datasets, and highly skilled researchers), 

it may lead to the prioritization of profit-driven research areas, potentially sidelining more 

fundamental or socially relevant scientific paths (Ahmed et al., 2023). 

Aptly, this Issues and Opinions essay has implications on what can be studied by the 

information systems community. Historically, it has been observed that numerous technologies 

originally developed by scientific techniques have subsequently laid the groundwork for 

information systems in key industrial processes (Romasanta et al., 2021; Wareham et al. 2022). 

Following this example, we encourage the IS field to rebalance preemptive regulations and 

equally focus on post-deployment monitoring and control. This extends the discourse around 

AI regulation to include ongoing governance and adaptability, encouraging research on how 

organizations can implement robust post-deployment surveillance, auditing, and continuous 

improvement measures for AI systems. We summarize our insights and implications in Table 2. 

Table 2: Updating previous assumptions in AI regulation  
Change in assumptions Implications for policy  Implication for information 

systems research  
Instead of construing AI as 
mysterious, monolithic black boxes, AI 
models often offer layers of 
intermediate processes and outcomes 
that are made accessible by user 
communities. 

Regulators should avoid excessive 
efforts to enforce explicability ex-
ante as it may constrain the 
emergent benefits of the model that 
may only be discovered ex-post. 

Researchers can explore the 
unpredictable but potentially 
advantageous prospects of 
inscrutable AI. For instance, 
research can be done on how 
organizations and user communities 
reverse engineer and test numerous 
attributes for novel insights.  

Instead of being static entities, AI 
models are heavily influenced by 

Regulators must consider that AI 
systems evolve over time due to 

Researchers can explore such 
continuous interrogation of AI 



iterative cycles of new data inputs, 
refining, and self-learning, and 
continuous interrogation by user 
communities. Hence Inscrutability is 
not a static property. 
 

continuous interrogation and 
adjustment by users. A 'once-and-
done' attitude towards regulation is 
unlikely to suffice: Regulatory 
enforcement should allow for 
amendments and updates that 
reflect evolving AI systems. 

through longitudinal research 
designs across contexts, including  
organizational standards, risk 
assessments, and operational 
protocols that consider the 
evolutionary nature of AI.   
 

Instead of a one-size-fits-all standard 
of explainability, AI models require 
tailorable and context-sensitive 
explanations.  

Regulators should recognize that 
several factors dictate the required 
level of explainability, including the 
sector, application, potential risks, 
and the user community. 

Researchers can explore the varying 
levels of explainability required in 
different contexts, as well as on how 
these needs can be refined and met. 

Instead of viewing AI models only in 
the context of their original intended 
use, AI models have immense 
repurposing value, offering alternative 
modalities valuable for both related 
and different categories of problems.   

Regulators should recognize that 
atheoretical, inscrutable aspects of 
AI models are not exclusively threats 
or liabilities to be mitigated ex-ante: 
Strict pre-deployment regulations 
might inhibit the dynamic uses and 
capabilities of AI. This renders policy 
premised on ex-ante explicability 
less feasible and calls for greater 
burden on mechanisms for ex-post 
monitoring and compliance.  

Researchers can study AI 
repurposing, and move beyond 
minimizing bias during design and 
deployment, Research should thus 
investigate approaches to how such 
biases are managed ex-post.   
 
Researchers can focus on how value 
is created through repurposing. 

Instead of pigeonholing their prime 
role as a prediction machines, AI 
models should be viewed as 
intermediaries in larger processes 
offering both empirical and theoretical 
value. 

Regulators must recognize the broad 
context in which AI operates, 
promoting regulations that cater to 
both the direct and indirect impacts 
of AI. 

Researchers should revisit the 
generalization that modern AI is 
most useful for prediction, while 
classical techniques are useful for 
understanding. Attention can be 
given to designing AI systems that 
explicitly inform theorizing. Larger 
questions of how AI reshapes the 
concept of “understanding” and 
ontologies in both scientific and 
business settings are germane.  

 

CONCLUSION 

Science, computing, and theory have evolved through an assorted and subtle relationship that 

has been both contentious and beneficial throughout their history. Understanding something in 

a scientific sense is far from a monolithic concept. This may render the relationship between 

computation and scientific explanation as an imperfect simile for policy debates on explainable 

AI – but therein lies its contribution: AI explicability, as we have argued, is more subtle and 

complex than often portrayed. More importantly, the atheoretical and inscrutable aspects of 

many AI deployments are not exclusively liabilities – novel modalities of exploring and 

simulating the universe, liberated from theoretical priors, offer numerous opportunities that 

should be acknowledged in AI regulation. This suggests a greater emphasis on ex-post 

monitoring and compliance than is salient in current regulatory proposals. Policy discussions 



on AI regulation can benefit from the nuance and refinement represented throughout the history 

to the current state of the art of scientific computing to negotiate this delicate equilibrium 

between ex-ante and ex-post mechanisms. 
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